985 resultados para Idiopathic generalized epilepsy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies using quantitative neuroimaging have shown subtle abnormalities in patients with idiopathic generalized epilepsy (IGE). These findings have several locations, but the midline parasagittal structures are most commonly implicated. The cingulate cortex is related and may be involved. The objective of the current investigation was to perform a comprehensive analysis of the cingulate cortex using multiple quantitative structural neuroimaging techniques. Thirty-two patients (18 women, 30 ± 10 years) and 36 controls (18 women, 32 ± 11 years) were imaged by 3 Tesla magnetic resonance imaging (MRI). A volumetric three-dimensional (3D) sequence was acquired and used for this investigation. Regions-of-interest were selected and voxel-based morphometry (VBM) analyses compared the cingulate cortex of the two groups using Statistical Parametric Mapping (SPM8) and VBM8 software. Cortical analyses of the cingulate gyrus was performed using Freesurfer. Images were submitted to automatic processing using built-in routines and recommendations. Structural parameters were extracted for individual analyses, and comparisons between groups were restricted to the cingulate gyrus. Finally, shape analyses was performed on the anterior rostral, anterior caudal, posterior, and isthmus cingulate using spherical harmonic description (SPHARM). VBM analyses of cingulate gyrus showed areas of gray matter atrophy, mainly in the anterior cingulate gyrus (972 mm(3) ) and the isthmus (168 mm(3) ). Individual analyses of the cingulate cortex were similar between patients with IGE and controls. Surface-based comparisons revealed abnormalities located mainly in the posterior cingulate cortex (718.12 mm(2) ). Shape analyses demonstrated a predominance of anterior and posterior cingulate abnormalities. This study suggests that patients with IGE have structural abnormalities in the cingulate gyrus mainly localized at the anterior and posterior portions. This finding is subtle and variable among patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated 50 young patients with a diagnosis of Rolandic Epilepsy (RE) for the presence of abnormalities in autonomic tone compared with 50 young patients with idiopathic generalized epilepsy with absences and 50 typically developing children of comparable age. We analyzed time domain (N-N interval, pNN50) and frequency domain (High Frequency (HF), Low Frequency (LF) and LF/HF ratio) indices from ten-minute resting EKG activity. Patients with RE showed significantly higher HF and lower LF power and lower LF/HF ratio than controls, independent of the epilepsy group, and did not show significant differences in any other autonomic index with respect to the two control groups. In RE, we found a negative relationship between both seizure load and frequency of sleep interictal EEG abnormalities with parasympathetic drive levels. These changes might be the expression of adaptive mechanisms to prevent the excessive sympathetic drive seen in patients with refractory epilepsies. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - To investigate visual habituation – a measure of visual cortical excitability – in photosensitive patients in pediatric age and compare the findings with a matched sample with idiopathic generalized epilepsies without photosensitivity and with normally developing children. Methods - We presented a full-field black-and-white checkerboard pattern, at 3 reversal/s with 100% contrast binocularly for 600 consecutive trials and measured the N75–P100 and P100–N145 pattern-reversal visual evoked potential inter-peak amplitudes and N75, P100, N145 latencies for the six blocks of 100 responses. As a measure of habituation we used the slope of the linear regression line of the N75–P100 and P100–N145 peak-to-peak amplitudes. The slope of the linear regression line of the N75–P100 and P100–N145 latencies was also analyzed. Results - Statistical analysis revealed significant differences between the three groups in the slope index of N75–P100 PR-VEP amplitude, with increased or constant amplitude in the PS group compare to the IGE and ND across the six blocks. Conclusions - Our results support the notion that photosensitivity is associated with altered control of excitatory and inhibitory cortical processes. The causal relationship between habituation deficit and photo-paroxysmal response needs to be further investigated with longitudinal studies. Significance This study supports the hypothesis that suppression of PR-VEP is a sensitive intermediate phenotype, which discriminates patients with photosensitivity from those with generalized epilepsies in pediatric age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations. Methods: We included patients with SMEI including borderline SMEI (SMEB), GEFS+, febrile seizures (FS), or other seizure types precipitated by fever. We performed a clinical and genetic study focusing on SCN1A, using dHPLC, gene sequencing, and MLPA to detect genomic deletions/duplications on SMEI/SMEB patients. Results: We classified patients as: SMEI/SMEB = 55; GEFS+ = 26; and other phenotypes = 51. SCN1A analysis by dHPLC/sequencing revealed 40 mutations in 37 SMEI/SMEB (67%) and 3 GEFS+ (11.5%) probands. MLPA showed genomic deletions in 2 of 18 SMEI/SMEB. Most mutations were de novo (82%). SMEB patients carrying mutations (8) were more likely to have missense mutations (62.5%), conversely SMEI patients (31) had more truncating, splice site or genomic alterations (64.5%). SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS compared to those with missense mutations and without mutations (p = 0.00007, ANOVA test). None of the remaining patients with seizures precipitated by fever carried SCN1A mutations. Conclusion: We obtained a frequency of 71% SCN1A abnormalities in SMEI/SMEB and of 11.5% in GEFS+ probands. MLPA complements DNA sequencing of SCN1A increasing the mutation detection rate. SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS. This study confirms the high sensitivity of SCN1A for SMEI/SMEB phenotypes. © 2007 International League Against Epilepsy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Epilepsy is a common neurologic disorder affecting 1% of the world population with one-third of these patients failing to have seizure control for more than one year. Clobazam is a long-acting benzodiazepine used worldwide for the treatment of epilepsy. This antiepileptic drug has demonstrated great clinical benefits with mild side effects. The objective of this study was to better understand the efficacy of clobazam treatment on adult patients with refractory epilepsy. Design: A retrospective review of 44 adult patients with diagnosis of epilepsy that were seen at our Epilepsy Clinic between January 2014 and May 2015. Setting: An outpatient epilepsy clinic at the Hospital Universitario Fundación Santa Fe de Bogota, Colombia. Participants: 44 adult patients with diagnosis of epilepsy. Measurements: Seizure frequency, adverse effects and the use of concomitant AEDs were reviewed in each of the patient´s clinical charts. Results: The responder rate of patients with clobazam was 52% at 3 months, 50% at 6 months and 55% at 12 month. Seizure freedom rates at 3, 6 and 12 months were 18%, 25% and 25% respectively. Clobazam related adverse events occurred only in four patients (9%) at the end of the twelve months with somnolence being the most common. Conclusion: These findings suggest that clobazam treatment in adult patients with focal or generalized epilepsy is effective and safe. Its use should be considered early when first-line agents fail to provide seizure control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Executive dysfunction is reported in juvenile myoclonic epilepsy (JME). However, batteries employed in previous studies included no more than three tests of executive function. In this study, we aimed to assess executive and attentional functions in JME using a comprehensive battery of eight tests (encompassing fifteen subtests). We also evaluated neuropsychological profiles using a clinical criterion of severity and correlated these findings with epilepsy clinical variables and the presence of psychiatric disorders. We prospectively evaluated 42 patients with JME and a matched control group with Digit Span tests (forward and backward), Stroop Color-Word Test, Trail Making Test, Wisconsin Card-Sorting Test, Matching Familiar Figures Test and Word Fluency Test. We estimated IQ with the Matrix Reasoning and Vocabulary subtests of the Wechsler Abbreviated Intelligence Scale. The patients with JME showed specific deficits in working memory, inhibitory control, concept formation, goal maintenance, mental flexibility, and verbal fluency. We observed attentional deficits in processes such as alertness and attention span and those requiring sustained and divided attention. We found that 83.33% of the patients had moderate or severe executive dysfunction. In addition, attentional and executive impairment was correlated with higher frequency of seizures and the presence of psychiatric disorders. Furthermore, executive dysfunction correlated with a longer duration of epilepsy. Our findings indicate the need for comprehensive neuropsychological batteries in patients with JME, in order to provide a more extensive evaluation of attentional and executive functions and to show that some relevant deficits have been overlooked. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

γ-Aminobutyric acid type B receptors (GABABRs) are involved in the fine tuning of inhibitory synaptic transmission. Presynaptic GABABRs inhibit neurotransmitter release by down-regulating high-voltage activated Ca2+ channels, whereas postsynaptic GABABRs decrease neuronal excitability by activating a prominent inwardly rectifying K+ (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Here we report the cloning and functional characterization of two human GABABRs, hGABABR1a (hR1a) and hGABABR1b (hR1b). These receptors closely match the pharmacological properties and molecular weights of the most abundant native GABABRs. We show that in transfected mammalian cells hR1a and hR1b can modulate heteromeric Kir3.1/3.2 and Kir3.1/3.4 channels. Heterologous expression therefore supports the notion that Kir3 channels are the postsynaptic effectors of GABABRs. Our data further demonstrate that in principle either of the cloned receptors could mediate inhibitory postsynaptic potentials. We find that in the cerebellum hR1a and hR1b transcripts are largely confined to granule and Purkinje cells, respectively. This finding supports a selective association of hR1b, and not hR1a, with postsynaptic Kir3 channels. The mapping of the GABABR1 gene to human chromosome 6p21.3, in the vicinity of a susceptibility locus (EJM1) for idiopathic generalized epilepsies, identifies a candidate gene for inherited forms of epilepsy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

目的 研究氯离子通道CLC-2基因是否与中国云南地区基诺族及汉族特发性全面强直-阵挛性癫(癎)(IGTCS)相关.方法 以14例云南西双版纳傣族自治州景洪市基诺乡基诺族IGTCS患者及其16名未发病亲属、67例云南籍汉族IGTCS患者及57名云南籍汉族健康体检者为对照,对常染色体3q26上CLCN2基因的内含子2及外显子5、19(内含子18)进行研究,采用PCR及直接基因测序技术,应用病例-对照研究法对CLCN2基因与云南基诺族及汉族IGTCS进行相关性分析.结果 CLCN2基因的内含子2及外显子5、19在病例组和对照组中均没有发现已报道的易患突变,但我们在对外显子19的序列测定过程中发现了其上游内含子18的146位上存在1个单核苷酸多态性位点:146T→C.该位点的3种基因型(TT、TC、CC)在汉族病例组(9、3、29例)和汉族对照组(22、9、26例)之间的分布差异有统计学意义(x2=16.079,P<0.05);在基诺族组(基诺族病例组+基诺族亲属组,6、12、12例)与汉族对照组(22、9、26例)之间分布差异亦有统计学意义(x2=7.027,P<0.05).汉族病例组与汉族对照组间TT型与非TT型基因型(分别为9、32例和22、35例)、TC型与非TC型基因型(分别为3、38例和9、48例)比较差异有统计学意义(x2=10.694,OR=4.121,P<0.05;x2=11.592,OR=0.238,P<0.05).结论 CLCN2基因内含子18的多态性位点146T→C可能是中国云南地区基诺族与汉族IGTCS患者的1个相关性位点,且在本组有限的样本数量研究中,此SNP位点在两个民族IGTCS患者之间的分布无民族差异.基因型TT为IGTCS的1个保护性因素,基因型TC则增加了患者的易患性.